Link polynomials related to the new braid group representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 244241
(http://iopscience.iop.org/0305-4470/24/18/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:52

Please note that terms and conditions apply.

Link polynomials related to the new braid group representations

You-Quan Li $\dagger \S$ and Mo-Lin Ge \ddagger
\dagger CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China, and Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, People's Republic of China
\ddagger Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People’s Republic of China

Received 1 January 1991

Abstract

By introducing a modified diagonal matrix h, the properties of Markov moves are examined for the non-standard representations of the braid group associated with the fundamental representations of A_{n}, B_{n}, C_{n} and D_{n}. It is shown that link polynomials can be constructed from those braid group representations. The skein relations of link polynomials are obtained explicitly.

1. Introduction

Recently there has been a great deal of interest in the study of braid group representations and their related topological invariants (link polynomials) [1-8] due to the fact that they are tightly concerned with two-dimensional statistical mechanics, quantum integrable systems and conformal field theory [9-14]. It is known that link polynomials can be derived from certain braid group representations via a Markov trace [2, 15]. A sequence of new braid group representations cailed non-standard representations of braid groups are obtained [16] under the constraints of weight conservation conditions [15]. However, whether polynomials can be derived from them was not clear then. In a previous letter [17] we constructed the polynomial for a simple sort of non-standard representation of braid group associated with fundamental representation of ${ }^{\prime} A_{n}$.

In this paper, introducing a modified (non-positive definite) diagonal matrix h, we show that link polynomials can be constructed from all the known non-standard representations of braid group associated with fundamental representation of A_{n}, B_{n}, C_{n} and D_{n}. In the next section we derive the constraints by Markov move I with the modified matrix h, and discuss the cases of A_{n}, B_{n}, C_{n} and D_{n} concretely. In section 3 we give the main results of non-standard representations of braid group in some more convenient notations. In section 4 we examine Markov moves I and II respectively for the non-standard representations of braid group, and derive the link polynomials from them explicitly. In section 5 we give some remarks and discussions.
§ Mailing address: Zhejiang Institute of Modern Physics, Zhejiang University, Hongzhou 310027, People's Republic of China.

2. The constraints by Markov move I with modified h

Link polynomials are functionals of topological equivalent classes of links. They can be constructed from certain braid group representations since any link can be regarded as a closed braid and vice versa. The closed braids from equivalent braids or inequivalent ones, but mutually transformed by Markov moves, give the same link. Thus for a given non-trivial representation of braid group, whether a polynomial can be constructed from it depends on whether a Markov trace can be defined properly.

In order to obtain link polynomials from the non-standard representations of braid group, we introduce a modified diagonal matrix h

$$
\begin{equation*}
h=\left(h_{b}^{a}\right) \quad h_{b}^{a}:=\delta_{a}^{\prime} q^{4 \Lambda_{a} \rho+\Delta_{a}} \delta_{b}^{a} \tag{1}
\end{equation*}
$$

where $\delta_{a}^{\prime}= \pm 1, \Delta_{a}=4 \Lambda_{a} \varepsilon, \delta_{b}^{a}$ is the Kronecker delta, ρ is half the sum of all positive roots of a Lie algebra and $\Lambda_{a}(a \in I \subset \mathbb{Z})$ are weight vectors of an irreducible representation of the Lie algebra.

For the modified h, the property of Markov move I (see [2] and [15]) $\operatorname{tr}\left(\mathrm{H} A_{1} \boldsymbol{A}_{2}\right)=$ $\operatorname{tr}\left(H A_{2} A_{1}\right)$ requires that

$$
\begin{equation*}
\left(\delta_{a}^{\prime} \delta_{b}^{\prime} q^{4\left(\Lambda_{a}+\Lambda_{b}\right)(\rho+\varepsilon)}-\delta_{c}^{\prime} \delta_{d}^{\prime} q^{4\left(\Lambda_{c}+\Lambda_{d}\right)(\rho+\varepsilon)}\right) S_{c d}^{a b}=0 \tag{2}
\end{equation*}
$$

where $S_{c d}^{a b}$ are the elements of the \mathbf{S}-matrix of braid group representation [2,15]. This leads to $S_{c d}^{a b}=0$ unless

$$
\begin{equation*}
\Lambda_{a}+\Lambda_{b}=\Lambda_{c}+\Lambda_{d} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{a}^{\prime} \delta_{b}^{\prime}=\delta_{c}^{\prime} \delta_{d}^{\prime} \tag{4}
\end{equation*}
$$

In the case of fundamental representation of A_{n}, the non-vanishing contributions to the S-matrix determined by weight conservation condition (3) [15] are the following Kauffman [3] diagrams

where the set of labels is $l=\{n, n-2, \ldots,-n+2,-n\}$. Obviously, (4) holds identically for the non-vanishing elements of the \mathbf{S}-matrix.

In the cases of fundamental representations of B_{n}, C_{n} and D_{n}, the non-vanishing contributions to the S-matrix are determined without much difficulty [15]. They are the following Kauffman diagrams

where the sets of labels are $l=\{2 n, 2 n-2, \ldots,-2 n+2,-2 n\}$ for $B_{n}, l=$ $\{2 n-1,2 n-3, \ldots, 1,-1, \ldots,-2 n+3,-2 n+1\}$ for C_{n} and D_{n}. Equation (4) holds for the first four diagrams of (6). For the last diagram of (6), equation (4) becomes

$$
\begin{equation*}
\delta_{a}^{\prime} \delta_{-a}^{\prime}=\delta_{-b}^{\prime} \delta_{b}^{\prime} . \tag{7}
\end{equation*}
$$

Because (7) should be satisfied for any a and b in the set of labels, it requires that

$$
\begin{equation*}
\delta_{a}^{\prime}=\delta_{-a}^{\prime} \quad \forall a \in l \tag{8a}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{a}^{\prime}=-\delta_{-a}^{\prime} \quad \forall a \in I . \tag{8b}
\end{equation*}
$$

3. Non-standard representations of a braid group (main results)

Starting from the structure of braid group representation which is determined by the weight conservation condition [15], one can obtain the braid group representation explicitly by solving the spectral parameter-independent Yang-Baxter equation (ybe) directly. If all coefficients of non-vanishing Kauffman diagrams are not assumed to be independent of labels (certainly the transposition symmetry is still adopted due to the prime star invariance of polynomials [15]), a sequence of new solutions of parameterindependent Ybe will be obtained. This gives the so-called non-standard representations of braid group [16]. Using the notation $\delta_{a}= \pm 1$, we can write the results of [16] as follows.
A_{n} :

where δ_{a} takes +1 or -1 arbitrarily, different arrangement of the two values in $\left\{\delta_{a}\right\}$ corresponds to different representation of braid group. Evidently the standard case is that every δ_{a} equals 1 instead of -1 or just vice versa.
B_{n} :
$S:=$

where

$$
\begin{array}{lll}
u_{a}=\delta_{a} q^{\delta_{u}-\delta_{u, 0}} & \delta_{-a}=\delta_{a} & \delta_{0}=1 \tag{10}\\
p_{a+b}^{b}=1 & w_{a+b}^{b}=q-q^{-1} & \text { for } a+b \neq 0 \\
p_{0}^{b}=\left(u_{b}\right)^{-1} & w_{0}^{b}=\left(q-q^{-1}\right)\left(1-u_{a} \prod_{c=-b}^{b} u_{c}^{-1}\right) \\
q_{b}^{a}=(-1)^{(a+b) / 2+1}\left(q-q^{-1}\right) u_{a}^{1 / 2} u_{b}^{1 / 2} \prod_{c=a}^{b} u_{c}^{-1} \quad(a<b) \\
q_{b}^{a}=0 & (a>b) .
\end{array}
$$

If all $\delta_{a}=1$, it gives the standard representation.
C_{n} and D_{n} :

where

$$
\begin{align*}
& u_{a}=\delta_{a} q^{\delta_{a}} \quad \delta_{-a}=\delta_{a} \\
& p_{a+b}^{b}=1 \quad w_{a+b}^{b}=q-q^{-1} \quad \text { for } a+b \neq 0 \\
& p_{0}^{b}=u_{b}^{-1} \\
& w_{0}^{b}= \begin{cases}\left(q-q^{-1}\right)\left(1+u_{b} u_{1}^{-1} \prod_{c=-b}^{b} u_{c}^{-1}\right) & \text { for } C_{n} \\
\left(q-q^{-1}\right)\left(1-u_{b} u_{i} \prod_{c=-b}^{b} u_{c}^{-1}\right) & \text { for } D_{n}\end{cases} \tag{13}\\
& q_{b}^{a}=\left\{\begin{array}{lll}
-\frac{|a b|}{a b} u_{1}^{(|a b| / \alpha b-1) / 2}\left(q-q^{-1}\right) u_{a}^{1 / 2} u_{b}^{1 / 2} \prod_{c=a}^{b} u_{c}^{-1} & \text { for } C_{n} & \\
-u_{1}^{(1-|a b| / a b) / 2}\left(q-q^{-1}\right) u_{a}^{1 / 2} u_{b}^{1 / 2} \prod_{c=a}^{b} u_{c}^{-1} & \text { for } D_{n} & (a<b)
\end{array}\right. \\
& q_{b}^{a}=0 \quad(a>b) .
\end{align*}
$$

When $\delta_{a}=1$ for any $a \in l$, they become standard cases.

4. Construction of link polynomials

All of the non-standard representations of braid group were found under the weight conservation condition. Thus, once (4) is satisfied by non-vanishing elements of the S-matrix, Markov move I is guaranteed. Moreover δ_{a}^{\prime} and Δ_{a} in (1) should be determined by the property of Markov move II. Now we examine the properties of Markov moves for the non-standard representations of braid group.

4.1. Examination of Markov moves

Comparing the representations of braid group given in section 3 with (8), one can easily find that if

$$
\begin{equation*}
\delta_{a}^{\prime}=\delta_{a} \tag{14}
\end{equation*}
$$

equation (4) is satisfied whatever the cases of B_{n}, C_{n} or D_{n}. Therefore the property of Markov move I is satisfied for the cases of A_{n}, B_{n}, C_{n} and D_{n} when δ_{a}^{\prime} in (1) is just the notation δ_{a} in the non-standard representations of braid group.

It is not very difficult to prove that if

$$
\begin{equation*}
\Delta_{a-2}-2=\Delta_{a}-\left(\delta_{a-2}+\delta_{a}\right) \quad a \in l \tag{15}
\end{equation*}
$$

for A_{n} and B_{n}, and

$$
\begin{align*}
& \Delta_{a-2}-2=\Delta_{a}-\left(\delta_{a-2}+\delta_{a}\right) \quad(a \neq 1) \\
& \Delta_{-1}-4=\Delta_{1}-4 \delta_{1} \quad \text { for } C_{n} \tag{16}\\
& \Delta_{-1}=\Delta_{1} \quad \text { for } D_{n}
\end{align*}
$$

for C_{n} and D_{n}, the property of Markov move II [2] will be satisfied, i.e.

$$
\begin{array}{lr}
\sum_{b} S_{a b}^{a b} h_{b}^{b}=\tau & \text { independent of } a \tag{17}\\
\sum_{b}\left(S^{-1}\right)_{a b}^{a b} h_{b}^{b}=\bar{\tau} & \text { independent of } a .
\end{array}
$$

It is easy to calculate that $\tau=q^{n+\Delta_{n}+\delta_{n}}, q^{2 n-1+\Delta_{2 n}+\delta_{2 n}}, q^{2 n+\Delta_{2 n-1}+\delta_{2 n-1}}$, and $q^{2 n-2+\Delta_{2 n-1}+\delta_{2 n-1}} ; \quad \bar{\tau}=q^{-n+\Delta_{-n}-\delta_{-n}}, \quad q^{-2 n+1+\Delta_{-2 n}-\delta_{-2 n}}, \quad q^{-2 n+\Delta_{-2 n+1} \delta_{-2 n+1}} \quad$ and $q^{-2 n+2+\Delta_{-2 n+1} \delta_{-2 n+1}}$, for A_{n}, B_{n}, C_{n} and D_{n} respectively.

4.2. Link polynomials

Once the Markov trace is defined concretely, the link polynomial can be calculated explicitly. The formula is the same as that in [2,15]

$$
\begin{equation*}
P(A)=(\tau \bar{\tau})^{-(m-1) / 2}\left(\frac{\bar{\tau}}{\tau}\right)^{e(A) / 2} \phi(A) \quad A \in \mathscr{B}_{m} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi(A)=\operatorname{tr}(H g(A)) \tag{19}\\
& H=\prod^{m} \otimes h \tag{20}
\end{align*}
$$

but h given by (1) is different.
The eigenvalues of the \mathbf{S}-matrix (9) is found to be q and $-q^{-1}$. So the reduction relation of braid group representation $g_{i}=I^{(1)} \otimes \ldots \otimes I^{(i-1)} \otimes S \otimes I^{(i+2)} \otimes \ldots \otimes I^{(m)}$ is

$$
\begin{equation*}
\left(g_{i}-q\right)\left(g_{i}+q^{-i}\right)=0 \tag{21}
\end{equation*}
$$

After solving the recursive relations (15) of Δ_{a} for A_{n}, we obtain from (18) and (21) the following skein relation for polynomials of the A_{n} case:

$$
\begin{equation*}
q^{\mu} P_{+}-\left(q-q^{-1}\right) r_{0}-q^{-\mu} P_{-}=0 \tag{22}
\end{equation*}
$$

where we have adopted a notation

$$
\begin{equation*}
\mu:=\sum_{b \in I} \delta_{b} . \tag{23}
\end{equation*}
$$

It is found that the \mathbf{S}-matrices of cases B_{n}, C_{n} and D_{n} have three distinct eigenvalues: $\lambda_{1}=q, \lambda_{2}=-q^{-1}$ for B_{n}, C_{n} and D_{n} but $\lambda_{3}=q^{-\mu+1}$ for $B_{n}, \lambda_{3}=-\delta_{1} q^{-\mu-\delta_{1}}$ for C_{n} and $\lambda_{3}=\delta_{1} q^{-\mu+\delta_{1}}$ for D_{n}. Then the reduction relations of braid group representations of those cases can be written down. After solving the recursive relations of Δ_{a} (equations (15) and (16)) for those cases, we obtain the following cubic skein relations in an analogous way:

$$
\begin{equation*}
B_{n}: \quad q^{2(\mu-1)} P_{+2}-\left(q^{\mu}-q^{\mu-2}+1\right) P_{+1}-\left(q^{-\mu}-q^{-\mu+2}+1\right) P_{0}+q^{-2(\mu-1)} P_{-1}=0 \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& C_{n}: \quad q^{2\left(\mu+\delta_{1}\right)} P_{+2}-\left(q^{\mu+\delta_{1}+1}-q^{\mu+\delta_{1}-1}-\delta_{1}\right) P_{+1} \\
&+\delta_{1}\left(q^{-\mu-\delta_{1}-1}-q^{-\mu-\delta_{1}+1}-\delta_{1}\right) P_{0}-\delta_{1} q^{-2\left(\mu+\delta_{1}\right)} P_{-1}=0 \tag{25}\\
& D_{n}: \quad q^{2\left(\mu-\delta_{1}\right)} P_{+2}-\left(q^{\mu-\delta_{1}+1}-q^{\mu-\delta_{1}-1}+\delta_{1}\right) P_{+1} \\
&-\delta_{1}\left(q^{-\mu+\delta_{1}-1}-q^{-\mu+\delta_{1}+1}+\delta_{1}\right) P_{0}+\delta_{1} q^{-2\left(\mu-\delta_{1}\right)} P_{-1}=0 \tag{26}
\end{align*}
$$

where the notation of (23) has been used.

5. Remarks and discussion

In the above we have shown that link polynomials can be defined from the so-called non-standard representations of braid group. The key step is introducing an appropriate diagonal matrix h so that the Markov trace can be defined. Actually the Markov trace defined by standard trace of matrix with a non-positive definite diagonal matrix can be considered as that defined by a supertrace with a positive definite diagonal matrix, i.e.

$$
\begin{equation*}
\Phi(A)=\operatorname{str}(H g(A)) \quad A \in \mathscr{B}_{m} \tag{27}
\end{equation*}
$$

where $\operatorname{str}(M)=\operatorname{tr}(\mathscr{H} M), \mathscr{H}=\Pi^{m} \otimes \eta, \eta_{b}^{a}=\delta_{a} \delta_{b}^{a}$ while $H=\Pi^{m} \otimes h, h_{b}^{a}=q^{4 \lambda_{a}(\rho+\varepsilon)}$. As we showed in [14], ε is the sum of some roots.

One may notice that (23) means

$$
\begin{equation*}
\mu=\operatorname{tr} \eta . \tag{28}
\end{equation*}
$$

For the standard case, η is a unit matrix and then μ is the dimension of the matrix. The skein relations (22) and (24)-(26) depend on the integer μ, so each skein relation for link polynomials corresponds to one standard representation and a series of non-standard representations having the same μ and δ_{1} (the latter only for the cases of C_{n} and D_{n}). The skein relation (22) of the A_{n} case is equivalent to that constructed from the vertex models associated with $\operatorname{gl}(m \mid n)$ [18].

Acknowledgments

The authors would like to thank Professors L Takhtajan, F Smirnov, H J deVega for interesting discussions during their visiting Nankai Institute of Mathematics and Drs L Y Wang, K Xue for interesting conversations.

References

[1] Jones V F R 1985 Bull. Am. Math. Soc. 12 103; 1987 Ann. Math. 126335
[2] Akutsu Y and Wadati M 1987 J. Phys. Soc. Japan 56 838, 3039; 1988 Commun. Math. Phys. 117143
[3] Kauftman L H 1987 Topology 26 375; 1987 Proc. Meeting of Brasilian Mathematical Society, July 1987
[4] Reshetikhin N Yu Preprints LOM1 E-4-87; E-17-87
[5] Turaev V G 1988 Invent. Math. 92572
[6] Witten E 1989 Commun. Math. Phys. 121351
[7] Ge M L, Wang L Y, Xue K and Wu Y S 1990 Int. J. Mod. Phys. A 43351
Ge M L, Li Y Q, Wang L Y and Xue K 1990 J. Phys. A: Math. Gen. 23605
Ge M L, Li Y Q and Xue K 1990 J. Phys. A: Math. Gen. 23619
[8] Hou B Y, Hou B Y and Ma Z Q 1989 Preprints BIHEP-TH-89-7, BIHEP-TH-89-8
[9] Yang C N 1967 Phys. Rev. Lett. 19 1312; 1968 Phys. Rev. 1681920
[10] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[11] Zamolodchikov A B and Zamolodchikov AI B 1978 Nucl. Phys. B 133 525; 1979 Ann. Phys. 120253
[12] Faddeev L D 1982 Recent Advances in Field Theory and Statistical Mechanics Session XXX IX
[13] Yang C N and Ge M L (ed) 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific)
Jimbo M (ed) 1990 Yang-Baxter Equation in Integrable Systems (Singapore: World Scientific)
[14] Moore G and Seiberg N 1988 Phys. Lett. 212B 451
Alvarez-Gaume L, Gomez C and Sierrea G 1989 Phys. Lett. 220B 142
Frohlich J 1987 Nonperturbation Quantum Field Theory ed G 't Hooft et al p 71
[15] Li Y Q, Ge M L, Xue K and Wang L Y 1990 Preprint ASITP-90-36
Li Y Q 1989 New approach to invariants of link and representations of braid group PhD thesis Lanzhou University
[16] Ge M L and Xue K 1990 Preprint ITP-SB-90-20 Stony Brook
[17] Li Y Q and Ge M L 1991 Phys. Lett. A in press
[18] Deguchi T and Akutsu Y 1990 J. Phys. A: Math. Gen. 231861

